A FAST GA-BASED METHOD FOR SOLVING TRUSS OPTIMIZATION PROBLEMS

Authors

  • B. Dizangian
  • M. R. Ghasemi
  • M. Salar
Abstract:

Due to the complex structural issues and increasing number of design variables, a rather fast optimization algorithm to lead to a global swift convergence history without multiple attempts may be of major concern. Genetic Algorithm (GA) includes random numerical technique that is inspired by nature and is used to solve optimization problems. In this study, a novel GA method based on self-adaptive operators is presented. Results show that this proposed method is faster than many other defined GA-based conventional algorithms. To investigate the efficiency of the proposed method, several famous optimization truss problems with semi-discrete variables are studied. The results reflect the good performance of the algorithm where relatively a less number of analyses is required for the global optimum solution.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A FAST FUZZY-TUNED MULTI-OBJECTIVE OPTIMIZATION FOR SIZING PROBLEMS

The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle ...

full text

Probability Collectives for Solving Truss Structure Problems

1. Abstract The approach of Probability Collectives (PC) in the Collective Intelligence (COIN) framework is one of the emerging Artificial Intelligence approaches dealing with the complex problems in a distributed way. It decomposes the entire system into subsystems and treats them as a group of learning, rational and self interested agents or a Multi-Agent System (MAS). These agents iterativel...

full text

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

full text

A New Method for Solving Constraint Satisfaction Problems

Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling" means assigning a value to a variable.) Sol...

full text

A New Method for Solving Constraint Satisfaction Problems

Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling means assigning a value to a variable.) Solu...

full text

A Method for Solving Optimal Control Problems Using Genetic Programming

This paper deals with a novel method for solving optimal control problems based on genetic programming. This approach produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Using numerical examples, we will demonstrate how to use the results.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  101- 114

publication date 2016-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023